Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 86: 102280, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029457

RESUMO

This investigation aimed to establish the promising role of insulin-producing cells (IPCs) growing from bone marrow-mesenchymal stem cells (BM-MSCs) in relieving hyperglycemia induced in rats. BM-MSCs were differentiated into IPCs using three different protocols. The efficiency of BM-MSCs differentiation into IPCs in vitro was confirmed by detecting IPCs specific gene expression (Foxa-2, PDX-1 and Ngn-3) and insulin release assay. The in vivo study design included 3 groups of male Wistar rats; negative control group, diabetic group and IPCs-transfused group (5 ×106 cells of the most functional IPCs/rat). One month after IPCs infusion, serum glucose, insulin, c-peptide and visfatin levels as well as pancreatic glucagon level were quantified. Gene expression analysis of pancreatic Foxa-2 and Sox-17, IGF-1 and FGF-10 was done. Additionally, histological investigation of pancreatic tissue sections was performed. Our data clarified that, the most functional IPCs are those generated from BM-MSCs using differentiation protocol 3 as indicated by the significant up-regulation of Foxa-2, PDX-1 and Ngn-3 gene expression levels. These findings were further emphasized by releasing of a significant amount of insulin in response to glucose load. The transplantation of the IPCs in diabetic rats elicited significant decline in serum glucose, visfatin and pancreatic glucagon levels along with significant rise in serum insulin and c-peptide levels. Moreover, it triggered significant up-regulation in the expression levels of pancreatic Foxa-2, Sox-17, IGF-1 and FGF-10 genes versus the untreated diabetic counterpart. The histopathological examination of pancreatic tissue almost assisted the biochemical and molecular genetic analyses. These results disclose that the cell therapy holds potential to develop a new cure for DM based on the capability of BM-MSCs to generate ß-cell phenotype using specific protocol.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Masculino , Ratos , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Glucagon/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Peptídeo C/metabolismo , Ratos Wistar , Insulina/metabolismo , Diferenciação Celular/genética , Glucose/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Células da Medula Óssea
2.
Future Sci OA ; 8(7): FSO811, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36248064

RESUMO

Aim: This study aimed to evaluate the efficacy of hypoxia-persistent insulin-producing cells (IPCs) against diabetes in vivo. Materials & methods: Mesenchymal stem cells (MSCs) differentiation into IPCs in the presence of Se/Ti (III) or CeO2 nanomaterials. IPCs were subjected to hypoxia and hypoxia genes were analyzed. PKH-26-labeled IPCs were infused in diabetic rats to evaluate their anti-diabetic potential. Results: MSCs were differentiated into functional IPCs. IPCs exhibited overexpression of anti-apoptotic genes and down-expression of hypoxia and apoptotic genes. IPCs implantation elicited glucose depletion and elevated insulin, HK and G6PD levels. They provoked VEGF and PDX-1 upregulation and HIF-1α and Caspase-3 down-regulation. IPCs transplantation ameliorated the destabilization of pancreatic tissue architecture. Conclusion: The chosen nanomaterials were impressive in generating hypoxia-resistant IPCs that could be an inspirational strategy for curing diabetes.

3.
BMC Mol Cell Biol ; 23(1): 41, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36123594

RESUMO

BACKGROUND: Despite the recent progress in the differentiation strategies of stem cells into pancreatic beta cell lineage, current protocols are not optimized for different cell types. The purpose of this study is to investigate and compare the ability of stem cells derived from dental pulp (DPSCs) and periodontal ligament (PDLSCs) as two anatomically different dental tissues to differentiate into pancreatic beta cells while assessing the most suitable protocol for each cell type. METHODS: DPSCs & PDLSCs were isolated and characterized morphologically and phenotypically and then differentiated into pancreatic beta cells using two protocols. Differentiated cells were assessed by qRT-PCR for the expression of pancreatic related markers Foxa-2, Sox-17, PDX-1, Ngn-3, INS and Gcg. Functional assessment of differentiation was performed by quantification of Insulin release via ELISA. RESULTS: Protocol 2 implementing Geltrex significantly enhanced the expression levels of all tested genes both in DPSCs & PDLSCs. Both DPSCs & PDLSCs illustrated improved response to increased glucose concentration in comparison to undifferentiated cells. Moreover, DPSCs demonstrated an advanced potency towards pancreatic lineage differentiation over PDLSCs under both protocols. CONCLUSION: In conclusion, the current study reports the promising potential of dental derived stem cells in differentiating into pancreatic lineage through selection of the right protocol.


Assuntos
Células Secretoras de Insulina , Insulinas , Células-Tronco Mesenquimais , Células Cultivadas , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco
4.
J Genet Eng Biotechnol ; 20(1): 85, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674918

RESUMO

BACKGROUND: This study was designed to generate functional insulin-producing cells (IPCs) from dental-derived mesenchymal stem cells (MSCs) and further explore their therapeutic potential against diabetes mellitus in vivo. MSCs were isolated from human dental pulp and periodontal ligament and were induced to differentiate into insulin-producing cells (IPCs) using laminin-based differentiation protocol for 14 days. Confirmation of IPCs was performed through real-time PCR analysis and insulin release assay. Then, the generated IPCs were labeled with PKH26 dye prior to transplantation in experimental animals. Twenty-eight days later, blood glucose, serum insulin (INS), c-peptide (CP), and visfatin (VF) levels and pancreatic glucagon (GC) level were estimated. Pancreatic forkhead box protein A2 (Foxa2) and SRY-box transcription factor 17 (Sox17), insulin-like growth factor I (IGF-1), and fibroblast growth factor10 (FGF 10) gene expression levels were analyzed. RESULTS: Dental stem cells were successfully differentiated into IPCs that demonstrated increased expression of pancreatic endocrine genes. IPCs released insulin after being subjected to high levels of glucose. In vivo findings uncovered that the implanted IPCs triggered significant decrease in blood glucose, serum VF, and pancreatic GC levels with significant increase in serum INS and CP levels. Furthermore, the implanted IPCs provoked significant upregulation in the expression level of pancreatic genes. Histopathological description of the pancreas tissues revealed that transplantation of IPCs ameliorated the destabilization of pancreas tissue architecture. CONCLUSION: This study demonstrates the significant role of the implantation of IPCs generated from dental-derived stem cells in treatment of diabetes mellitus.

5.
Biotech Histochem ; 97(5): 322-333, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34607472

RESUMO

Cardiac disease is the leading cause of mortality and disability worldwide. We investigated the role of undifferentiated adipose tissue-derived mesenchymal stem cells (ADMSC) alone and ADMSC seeded onto the electro-spun nanofibers (NF) for reconstructing damaged cardiac tissue in isoprenaline-induced myocardial infarction (MI) in rats. ADMSC were sorted by morphological appearance and by detection of cluster of differentiation (CD) surface antigens. The therapeutic potential of ADMSC for treating MI was evaluated by electrocardiogram (ECG), biochemical analysis, molecular genetic analysis and histological examination. Treatment of MI-challenged rats with ADMSC improved ECG findings, which were corroborated by significant decreases in serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzyme activities together with reduced serum troponin T (cTnT) and connexin 43 (Cx43) levels. MI model rats treated with ADMSC exhibited a significant increase in serum alpha sarcomeric actin (Actn) and GATA binding protein 4 (GATA4), and NK2 homeobox 5 (NKX2.5) gene expression was decreased following treatment with ADMSC. ADMSC also ameliorated damage to cardiac tissue. The effects of ADMSC seeded onto NF were superior to those of ADMSC alone. ADMSC may be useful for mitigation of MI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Nanofibras , Tecido Adiposo , Animais , Infarto do Miocárdio/terapia , Ratos , Regeneração
6.
Tissue Cell ; 73: 101661, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34656024

RESUMO

The development of efficient insulin producing cells (IPC) induction system is fundamental for the regenerative clinical applications targeting Diabetes Mellitus. This study was set to generate IPC from human dental pulp stem cells (hDPSCs) capable of surviving under hypoxic conditions in vitro and in vivo. METHODS: hDPSCs were cultured in IPCs induction media augmented with Cerium or Yttrium oxide nanoparticles along with selected growth factors & cytokines. The generated IPC were subjected to hypoxic stress in vitro to evaluate the ability of the nanoparticles to combat hypoxia. Next, they were labelled and implanted into diabetic rats. Twenty eight days later, blood glucose and serum insulin levels, hepatic hexokinase and glucose-6-phosphate dehydrogenase activities were measured. Pancreatic vascular endothelial growth factor (VEGF), pancreatic duodenal homeobox1 (Pdx-1), hypoxia inducible factor 1 alpha (HIF-1α) and Caspase-3 genes expression level were evaluated. RESULTS: hDPSCs were successfully differentiated into IPCs after incubation with the inductive media enriched with nanoparticles. The generated IPCs released significant amounts of insulin in response to increasing glucose concentration both in vitro & in vivo. The generated IPCs showed up-regulation in the expression levels of anti-apoptotic genes in concomitant with down-regulation in the expression levels of hypoxic, and apoptotic genes. The in vivo study confirmed the homing of PKH-26-labeled cells in pancreas of treated groups. A significant up-regulation in the expression of pancreatic VEGF and PDX-1 genes associated with significant down-regulation in the expression of pancreatic HIF-1α and caspase-3 was evident. CONCLUSION: The achieved results highlight the promising role of the Cerium & Yttrium oxide nanoparticles in promoting the generation of IPCs that have the ability to combat hypoxia and govern diabetes mellitus.


Assuntos
Cério/farmacologia , Polpa Dentária/citologia , Diabetes Mellitus Experimental/patologia , Hiperglicemia/patologia , Nanopartículas/química , Células-Tronco/citologia , Ítrio/farmacologia , Animais , Glicemia/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Hipóxia Celular/genética , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperglicemia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/sangue , Insulina/metabolismo , Masculino , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Tissue Cell ; 73: 101645, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34509824

RESUMO

The current approach was designed to unearth the therapeutic potential of osteoblasts infusion, yielded from cultivating rat mesenchymal stem cells of bone marrow source in osteogenic differentiation media supplied with either hydroxyapatite nanoparticles (HA-NPs), chitosan/hydroxyapatite nanomaterials (C/HA-NPs), or chitosan nanoparticles, in the osteoporotic rats. The successful migration of the osteoblasts to the diseased bones of rats in C/HA-NPs and HA-NPs groups was evidenced by PCR screening of the Y-linked sex-determining gene (SRY) in the femoral bone tissue. Serum bone biomarker levels and gene expression patterns of cathepsin K, receptor activator of nuclear factor kappa B ligand (RANKL), and osteoprotegerin (OPG) were assessed. Additionally, histological examination of the femoral bone tissues of rats was performed. The current outcomes revealed that osteoblast implantation, resulted from C/HA-NPs or HA-NPs group, significantly lessened bone sialoprotein level. In Addition, it yielded a significant decline in the gene expression patterns of cathepsin K, RANKL, and RANKL/OPG proportion as well as up-regulation in BMP-2 and Runx-2 gene expression levels as opposed to the untreated ovariectomized animals. Moreover, it could restrain bone resorption and refine bone histoarchitecture. Conclusively, this study sheds light on the therapeutic significance of osteoblasts transplantation in alleviating the intensity of the bone remodeling cycle, consequently representing a hopeful therapeutic approach for primary osteoporosis.


Assuntos
Reabsorção Óssea/complicações , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Nanoestruturas/química , Osteoblastos/patologia , Osteoporose/complicações , Animais , Biomarcadores/sangue , Reabsorção Óssea/sangue , Reabsorção Óssea/genética , Feminino , Fêmur/patologia , Regulação da Expressão Gênica , Masculino , Osteoporose/sangue , Osteoporose/genética , Ovariectomia , Ratos Wistar
8.
Biotech Histochem ; 96(6): 418-430, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32909452

RESUMO

The therapeutic role of mesenchymal stem cells (MSCs) in cases of amiodarone (AD) induced pulmonary fibrosis (PF) has not been well studied. Also, the period required by MSCs to attain full therapeutic effectiveness has not yet been assessed. We investigated the potential curative effect of bone marrow-derived MSCs (BM-MSCs) and conditioned media (CM) from BM-MSCs on AD induced PF by focusing on pulmonary epithelium injury and repair, and extracellular matrix (ECM) remodeling. We used 64 Wistar rats divided into eight groups: negative control group; PF group; three PF groups treated with BM-MSCs for 1, 2 or 4 months; and three PF groups treated with CM for 1, 2 and 4 months. Serum levels of Clara cell secretory protein (CC16) and keratinocyte growth factor (KGF) were measured. Gene expression of type I collagen (COL1A1) and connective tissue growth factor (CTGF) was evaluated in pulmonary tissue. Treatment of PF challenged rats with BM-MSCs or CM caused reduced CC16 levels, increased KGF levels, reduced expression of COL1A1 and CTGF, histological improvement following lung injury, and decreased collagen accumulation. Treatment with BM-MSCs exhibited greater amelioration of PF than CM. BM-MSCs or CM treatment for 2 and 4 months exhibited better resolution of fibrosis than treatment for 1 month. BM-MSCs are promising for treating PF due to their attenuation of ECM deposition in addition to alleviating pulmonary epithelium damage and initiating its repair.


Assuntos
Amiodarona , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Medula Óssea , Células da Medula Óssea , Epitélio , Matriz Extracelular , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Ratos , Ratos Wistar
9.
Heliyon ; 6(2): e03341, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32072048

RESUMO

Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.

10.
Appl Biochem Biotechnol ; 190(2): 551-573, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31396888

RESUMO

This approach was constructed to appraise the therapeutic effectiveness of a single i.v. dose of osteoblasts generated from co-culturing BM-MSCs with nano-HA, Pt-NPs, or Pt-HA-nanocomposite in osteoporotic rats. MSCs were grown, propagated in culture, and characterized. The effect of the suggested nanoplatforms on the survival, osteogenic differentiation, and mineralization of BM-MSCs was assessed by MTT assay, real-time PCR analysis, and Alizarin red S staining, respectively. Thereafter, the generated osteoblasts were employed for the treatment of ovariectomized rats. Our results revealed that the selected nanoplatforms upregulate the expression of osteogenic differentiation related genes (Runx-2 and BMP-2) significantly and enhance calcium deposition in BM-MSCs after 7 and 21 days, respectively, whereas the in vivo study validated that the infusion of the generated osteoblasts considerably downturn serum BALP, BSP, and SOST levels; upswing OSX level; and regain femur bone mineralization and histoarchitecture. Conclusively, the outcomes of this work provide scientific evidence that transplanting osteoblasts derived from differentiation of BM-MSCs in the presence of nanoplatforms in ovariectomized rats restores bone remodeling balance which constitutes a new hope for the treatment of osteoporosis.


Assuntos
Nanotecnologia , Osteogênese , Células-Tronco/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Técnicas de Cocultura , Feminino , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Cytotechnology ; 72(1): 1-22, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31722051

RESUMO

The present study aimed to investigate the osteoinductive potentiality of some selected nanostructures; Hydroxyapatite (HA-NPs), Gold (Au-NPs), Chitosan (C-NPs), Gold/hydroxyapatite (Au/HA-NPs) and Chitosan/hydroxyapatite (CH-NPs) on bone marrow- derived mesenchymal stem cells (BM-MSCs). These nanostructures were characterized using transmission electron microscope and Zetasizer. MSCs were isolated from bone marrow of rat femur bones and their identity was documented by morphology, flow cytometry and multi-potency capacity. The influence of the selected nanostructures on the viability, osteogenic differentiation and subsequent matrix mineralization of BM-MSCs was determined by MTT assay, molecular genetic analysis and alizarin red S staining, respectively. MTT analysis revealed insignificant toxicity of the tested nanostructures on BM-MSCs at concentrations ranged from 2 to 25 µg/ml over 48 h and 72 h incubation period. Notably, the tested nanostructures potentiate the osteogenic differentiation of BM-MSCs as evidenced by a prominent over-expression of runt-related transcription factor 2 (Runx-2) and bone morphogenetic protein 2 (BMP-2) genes after 7 days incubation. Moreover, the tested nanostructures induced matrix mineralization of BM-MSCs after 21 days as manifested by the formation of calcium nodules stained with alizarin red S. Conclusively, these data provide a compelling evidence for the functionality of the studied nanostructures as osteoinductive materials motivating the differentiation of BM-MSCs into osteoblasts with the most prominent effect observed with Au-NPs and Au/HA-NPs, followed by CH-NPs.

12.
J Mater Sci Mater Med ; 30(2): 24, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747346

RESUMO

The main target of this work was to explore the proliferative impact of selenium dioxide nanoparticles (SeO2) and selenium dioxide/titanium dioxide nanocomposites (Se/Ti (I), (II) and (III)) on mesenchymal stem cells (MSCs). For this purpose, SeO2 and Se/Ti (I), (II) and (III) were prepared by facile one step method and characterized by transmission electron microscopy (TEM), Zetasizer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) along with energy-dispersive X-ray spectrometry (EDX) with reference to SeO2 nanoparticles. Also, MSCs were isolated from rat bone marrow (BM-MSCs) and adipose tissue (ADSCs), propagated and characterized by flow cytometry. Thereafter, the proliferative effect of the fabricated nanomaterials was investigated by MTT assay. The TEM and DLS results, revealed that the average particle size of the suggested nanomaterials was in nanoscale. XRD pattern showed well crystalline structure for SeO2 nanoparticles and Se/Ti (I), (II) and (III) nanocomposites; the decreasing of the crystalline phase was observed by increasing the wt% of TiO2. The designed nanomaterials showed proliferative effects on MSCs with the most prominent effect exerted by 2 µg/ml of Se/Ti (III) and 5 µg/ml of Se/Ti (II) for ADSCs and 20 µg/ml of Se/Ti (II) and 10 µg/ml of Se/Ti (III) for BM-MSCs. Therefore, these newly designed nanomaterials have a promising influence on MSCs proliferation and they are recommended to be utilized in the filed of tissue engineering.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanopartículas Metálicas/química , Selênio/química , Engenharia Tecidual/métodos , Titânio/química , Tecido Adiposo/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/química , Tamanho da Partícula , Ratos , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Tumour Biol ; 39(6): 1010428317699127, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28618930

RESUMO

The global burden of hepatocellular carcinoma is increasing; actually, it is estimated as 750,000 new cases annually. This study was initiated to emphasize the possibility that gallic acid could alleviate hepatocarcinogenesis in vivo. In this study, 40 rats were enrolled and distributed as follows; group 1 was set as negative control, while all of groups 2, 3, and 4 were orally received N-nitrosodiethylamine for hepatocellular carcinoma induction. Group 2 was left untreated, whereas groups 3 and 4 were orally treated with gallic acid and doxorubicin, respectively. The current data indicated that gallic acid administration in hepatocellular carcinoma bearing rats yielded significant decline in serum levels of alpha-fetoprotein, glypican-3, and signal transducer and activator of transcription 3 along with significant enhancement in serum suppressors of cytokine signaling 3 level. Also, gallic acid-treated group displayed significant downregulation in the gene expression levels of hepatic gamma glutamyl transferase and heat shock protein gp96. Intriguingly, treatment with gallic acid remarkably ameliorated the destabilization of liver tissue architecture caused by N-nitrosodiethylamine intoxication as evidenced by histopathological investigation. In conclusion, this study demonstrates that the hepatocarcinogenic effect of N-nitrosodiethylamine can be abrogated by gallic acid supplementation owing to its affinity to regulate signal transducer and activator of transcription 3 signaling pathway through its outstanding bioactivities including antioxidant, anti-inflammatory, apoptotic, and antitumor effects.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3/biossíntese , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Dietilnitrosamina/toxicidade , Ácido Gálico , Regulação Neoplásica da Expressão Gênica , Glipicanas/biossíntese , Humanos , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Glicoproteínas de Membrana/genética , Ratos , alfa-Fetoproteínas/biossíntese
14.
Biol Trace Elem Res ; 177(2): 267-280, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27785741

RESUMO

This research was delineated to explore the efficacy of selenium nanoparticles delivered in liposomes (L-Se) in the mitigation of type-2 diabetes mellitus. Adult female Wistar rats were assigned into four groups: group I, the normal control group in which the rats received normal saline solution orally; group II, the diabetic control group in which the rats were injected intraperitoneally with a single dose of streptozotocin (STZ) for induction of diabetes; group III, the metformin (Met)-treated group in which the diabetic rats were treated orally with Met; and group IV, the L-Se-treated group in which the diabetic rats were treated orally with L-Se. All treatments were delivered for 21 days. Blood and pancreas tissue samples were obtained for biochemical analysis, immunohistochemical examinations, and histopathological investigation. The L-Se-treated group showed significant drop in serum glucose and pancreatic malondialdehyde (MDA), nitric oxide (NO), tumor necrosis factor-α (TNF-α), and prostaglandin F2α (PGF2α) levels associated with significant rise in serum insulin and pancreatic glutathione, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) values, in addition to significant improvement in the immunohistochemical indices (insulin and glucagon). Aforementioned results are appreciated by the histopathological findings of pancreatic tissue. In conclusion, our data have brought about compelling evidence favoring the antidiabetic potency of elemental selenium nanoparticles delivered in liposomes through preservation of pancreatic ß cell integrity with consequent increment of insulin secretion and in turn glucose depletion, repression of oxidative stress, potentiation of the antioxidant defense system, and inhibition of pancreatic inflammation.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Nanopartículas/uso terapêutico , Selênio/uso terapêutico , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Feminino , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Inflamação/tratamento farmacológico , Injeções Intraperitoneais , Insulina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos , Ratos Wistar , Selênio/administração & dosagem , Selênio/química , Estreptozocina
15.
Asian Pac J Trop Med ; 9(12): 1200-1211, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27955748

RESUMO

OBJECTIVE: To explore the in vivo anticancer, anti-angiogenesis and immunomodulatory efficacies of the bioactive polysaccharide isolated from cold aqueous extract of Jania rubens (JCEM) and Pterocladia capillacea (PCEM) as well as hot aqueous extract of Enteromorpha intestinalis (EHEM) against hepatocellular carcinoma rat model (HCC) and to study their chemical composition. METHODS: The sugars and amino acids composition of the bioactive polysaccharides of JCEM, PCEM and EHEM were determined using gas liquid chromatography and amino acid analyzer, respectively. These polysaccharide extracts (20 mg/kg b.wt. for 5 weeks) were assessed on hepatocarcinogenesis in rats and α-fetoprotein (AFP), carcinoembryonic antigen (CEA), glypican-3 (GPC-3), hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) and Ig G levels were evaluated. RESULTS: The GLC analysis of JCEM, PCEM and EHEM polysaccharide revealed the presence of 10, 9 and 10 sugars, in addition the amino acid analyzer enable identification of 16, 15 and 15 amino acids, respectively. These polysaccharide extracts of JCEM, PCEM and EHEM produced significant decrease in serum AFP, CEA, GPC-3, HGF and VEGF compared with untreated HCC group. JCEM, PCEM and EHEM had an immunostimulatory responses by increasing the IgG levels as compared by naïve value (1.23, 1.53 and 1.17 folds), respectively. The bioactive polysaccharides in HCC induced rats improved the humoral immune response. The photomicrographs of liver tissue sections of the groups of HCC treated with polysaccharide extracts of Jania rubens and Enteromorpha intestinalis showed intact histological structure. Moreover, fractions HE1, HE4, HE7 obtained from polysaccharide of EHEM showed moderate cytotoxic activity against HepG2 in vitro with IC50 73.1, 42.6, 76.2 µg/mL. However, fractions of PCEM and JCEM show no or weak cytotoxicity against HepG2 in vitro where the cytotoxic activity of their crude polysaccharide extract proved synergetic effect. CONCLUSIONS: The pronounced antitumor activity of sulfated polysaccharide-protein complexes of JCEM and EHEM is due to direct cytotoxic activity, anti-hepatocarcinogenesis, and anti-angiogenesis. In addition, JCEM, PCEM and EHEM had an immunostimulatory response and improved the humoral immune response in HCC induced rats.

16.
Asian Pac J Cancer Prev ; 17(11): 4991-4998, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28032729

RESUMO

Objective: This research was conducted to explore mechanisms behind the potency of quercetin in inhibiting colon cancer induced in an experimental model. Materials and Methods: Forty adult male rats of Wistar strain were distributed into 4 groups; a negative control group, a colon cancer bearing group, a quercetin-treated group and a 5-fluorouracil (5-FU)-treated group. Serum TAG72 and GAL3 levels were quantified by ELISA. Colonic Wnt5a and Axin-1 gene expression was estimated by PCR. In addition, colonic tissues were subjected to immunohistochemical examination of Bax expression and histological investigation of histopathological alterations. Results: Quercetin elicited significant reduction in serum TAG72 and GAL3 levels, in addition to significant suppression of colonic Wnt5a gene expression and amplification of colonic Axin-1 gene expression. Also, it caused moderate positive reaction for Bax in mucosal epithelium. Conclusion: The present research provides experimental evidence about the activity of quercetin in the colon cancer of rats. Inhibitory effects on cancer development might be ascribable to regulatory action on Wnt signaling and induction of apoptosis.

17.
Tissue Cell ; 48(5): 544-51, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27481213

RESUMO

OBJECTIVES: This study examines a pretreatment strategy to strengthen the hepatic lineage divergence of mesenchymal stem cells (MSCs). DESIGN AND METHODS: BMSCs were expanded in the presence or absence of nanofiber (NF) and treated with growth factors (GF) prior to transplantation. Thioacetamide (TA) was used for liver fibrosis induction and transplantation of NF-expanded BMSCs was compared biochemically and histologically to the cells expanded without NF scaffold. RESULTS: The ultraweb NF caused better proliferation and characterization of MSCs. MSCs transplantation significantly improved liver functions, increased hepatic HGF and Bcl-2 levels, whereas decreased serum fibronectin, hepatic TNF-α and TGF-ß1 levels. Hepatic HNF4α, FOXa2, CYP7a1 genes expression were enhanced while ß-5-Tub and AFP genes expression were depressed. Histological study documented these results. Differentiated NF-MSCs showed pronounced enhancement of the aforementioned parameters as compared to differentiated MSCs in the absence of NF. CONCLUSION: pretreatment with growth factors in the presence of NF augment homing, repopulation and hepatic differentiation abilities of MSCs and proves to be a promising approach for the treatment of liver fibrosis.


Assuntos
Diferenciação Celular/genética , Cirrose Hepática/terapia , Transplante de Células-Tronco Mesenquimais , Nanofibras/uso terapêutico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Células-Tronco Mesenquimais/citologia , Nanofibras/química
18.
World J Stem Cells ; 8(3): 106-17, 2016 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-27022441

RESUMO

AIM: To explore the approaches exerted by mesenchymal stem cells (MSCs) to improve Parkinson's disease (PD) pathophysiology. METHODS: MSCs were harvested from bone marrow of femoral bones of male rats, grown and propagated in culture. Twenty four ovariectomized animals were classified into 3 groups: Group (1) was control, Groups (2) and (3) were subcutaneously administered with rotenone for 14 d after one month of ovariectomy for induction of PD. Then, Group (2) was left untreated, while Group (3) was treated with single intravenous dose of bone marrow derived MSCs (BM-MSCs). SRY gene was assessed by PCR in brain tissue of the female rats. Serum transforming growth factor beta-1 (TGF-ß1), monocyte chemoattractant protein-1 (MCP-1) and brain derived neurotrophic factor (BDNF) levels were assayed by ELISA. Brain dopamine DA level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) and nestin gene expression were detected by semi-quantitative real time PCR. Brain survivin expression was determined by immunohistochemical procedure. Histopathological investigation of brain tissues was also done. RESULTS: BM-MSCs were able to home at the injured brains and elicited significant decrease in serum TGF-ß1 (489.7 ± 13.0 vs 691.2 ± 8.0, P < 0.05) and MCP-1 (89.6 ± 2.0 vs 112.1 ± 1.9, P < 0.05) levels associated with significant increase in serum BDNF (3663 ± 17.8 vs 2905 ± 72.9, P < 0.05) and brain DA (874 ± 15.0 vs 599 ± 9.8, P < 0.05) levels as well as brain TH (1.18 ± 0.004 vs 0.54 ± 0.009, P < 0.05) and nestin (1.29 ± 0.005 vs 0.67 ± 0.006, P < 0.05) genes expression levels. In addition to, producing insignificant increase in the number of positive cells for survivin (293.2 ± 15.9 vs 271.5 ± 15.9, P > 0.05) expression. Finally, the brain sections showed intact histological structure of the striatum as a result of treatment with BM-MSCs. CONCLUSION: The current study sheds light on the therapeutic potential of BM-MSCs against PD pathophysiology via multi-mechanistic actions.

19.
Cell Biol Int ; 38(12): 1367-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25044885

RESUMO

Alzheimer's disease (AD) has been called the disease of the century with significant clinical and socioeconomic impacts. Pharmacological treatment has limited efficacy and only provides symptomatic relief without long-term cure. Accordingly, there is an urgent need to develop novel and effective medications for AD. Stem cell-based therapy is a promising approach to handling neurodegenerative diseases. Therefore, the current study aimed to explore the possible therapeutic role of single intravenous injection of bone marrow derived mesenchymal stem cells (BM-MSCs) after 4 months in management of AD in the experimental model. The work also extended to compare the therapeutic potential of BM-MSCs with 2 conventional therapies of AD; rivastigmine and cerebrolysin administered daily. BM-MSCs were able to home at the injured brains and produced significant increases in the number of positive cells for choline acetyltransferase (ChAT) and survivin expression, as well as selective AD indicator-1 (seladin-1) and nestin gene expression. Histopathological examination indicated that BM-MSCs could remove beta-amyloid plaques from hippocampus. Significant improvement in these biomarkers was similar to or better sometimes than the reference drugs, clearly showing the potential therapeutic role of BM-MSCs against AD through their anti-apoptotic, neurogenic and immunomodulatory properties.


Assuntos
Doença de Alzheimer/terapia , Células da Medula Óssea/citologia , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...